ml.dmlc.mxnet.MXNetError: [16:16:57] include/mxnet/kvstore.h:161: compile with USE_DIST_KVSTORE=1 to init parameter server's environment

GitHub | tylorhxw | 6 months ago
  1. 0

    compile with USE_DIST_KVSTORE=1 but not work

    GitHub | 6 months ago | tylorhxw
    ml.dmlc.mxnet.MXNetError: [16:16:57] include/mxnet/kvstore.h:161: compile with USE_DIST_KVSTORE=1 to init parameter server's environment
  2. 0

    Get a core dump when trying to run the Scala example from the website

    GitHub | 2 weeks ago | danimateos
    ml.dmlc.mxnet.MXNetError: [12:01:22] /home/ubuntu/release/mxnet/mshadow/mshadow/./././dot_engine-inl.h:431: Check failed: dst.size(0) == sleft[0] && dst.size(1) == sright[1] && sleft[1] == sright[0] dot-gemm: matrix shape mismatch
  3. 0

    Possible to run two KVWorkers in one process?

    GitHub | 9 months ago | javelinjs
    ml.dmlc.mxnet.MXNetError: [20:55:44] src/postoffice.cc:77: Check failed: (customers_.count(id)) == ((size_t)0) id 0 already exists
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    [Scala] fail to run the example ExampleCustomOpWithRtc.scala

    GitHub | 2 days ago | Ldpe2G
    ml.dmlc.mxnet.MXNetError: [18:21:38] src/common/mxrtc.cc:46: Check failed: err = cuModuleLoadDataEx(&module, ptx_, 0, 0, 0) == CUDA_SUCCESS (201 vs. 0) CudaError: 201

    Root Cause Analysis

    1. ml.dmlc.mxnet.MXNetError

      [16:16:57] include/mxnet/kvstore.h:161: compile with USE_DIST_KVSTORE=1 to init parameter server's environment

      at ml.dmlc.mxnet.Base$.checkCall()
    2. ml.dmlc.mxnet
      MXNet$$anonfun$1.apply
      1. ml.dmlc.mxnet.Base$.checkCall(Base.scala:110)
      2. ml.dmlc.mxnet.KVStoreServer$.init(KVStoreServer.scala:53)
      3. ml.dmlc.mxnet.spark.MXNet$$anonfun$1.apply(MXNet.scala:134)
      4. ml.dmlc.mxnet.spark.MXNet$$anonfun$1.apply(MXNet.scala:116)
      4 frames
    3. Spark
      Executor$TaskRunner.run
      1. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
      2. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
      3. org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
      4. org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
      5. org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69)
      6. org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
      7. org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
      8. org.apache.spark.scheduler.Task.run(Task.scala:89)
      9. org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
      9 frames
    4. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames