Searched on Google with the first line of a JAVA stack trace?

We can recommend more relevant solutions and speed up debugging when you paste your entire stack trace with the exception message. Try a sample exception.

Recommended solutions based on your search

Solutions on the web

via Stack Overflow by user5147250
, 1 year ago
Cannot evaluate expression: PythonUDF#<lambda>(input[2, StringType])
java.lang.UnsupportedOperationException: Cannot evaluate expression: PythonUDF#<lambda>(input[2, StringType])	at org.apache.spark.sql.catalyst.expressions.Unevaluable$class.genCode(Expression.scala:191)	at org.apache.spark.sql.execution.PythonUDF.genCode(python.scala:44)	at org.apache.spark.sql.catalyst.expressions.Expression.gen(Expression.scala:98)	at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$1.apply(GenerateMutableProjection.scala:46)	at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$$anonfun$1.apply(GenerateMutableProjection.scala:43)	at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)	at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)	at scala.collection.immutable.List.foreach(List.scala:318)	at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)	at scala.collection.AbstractTraversable.map(Traversable.scala:105)	at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.create(GenerateMutableProjection.scala:43)	at org.apache.spark.sql.catalyst.expressions.codegen.GenerateMutableProjection$.create(GenerateMutableProjection.scala:33)	at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator.generate(CodeGenerator.scala:425)	at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator.generate(CodeGenerator.scala:422)	at org.apache.spark.sql.execution.SparkPlan.newMutableProjection(SparkPlan.scala:255)	at org.apache.spark.sql.execution.BatchPythonEvaluation$$anonfun$doExecute$1.apply(python.scala:370)	at org.apache.spark.sql.execution.BatchPythonEvaluation$$anonfun$doExecute$1.apply(python.scala:362)	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)	at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$17.apply(RDD.scala:710)	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)	at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)	at org.apache.spark.scheduler.Task.run(Task.scala:88)	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)	at java.lang.Thread.run(Thread.java:745)