java.lang.AssertionError: objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696

JIRA | Sebastian Vidrio | 2 years ago
tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    R Repro: pros.hex <- h2o.uploadFile(conn, locate("smalldata/prostate/prostate.csv.zip")) pros.hex[,2] <- as.factor(pros.hex[,2]) pros.hex[,4] <- as.factor(pros.hex[,4]) pros.hex[,5] <- as.factor(pros.hex[,5]) pros.hex[,6] <- as.factor(pros.hex[,6]) pros.hex[,9] <- as.factor(pros.hex[,9]) p.sid <- h2o.runif(pros.hex) pros.train <- h2o.assign(pros.hex[p.sid > .2, ], "pros.train") pros.test <- h2o.assign(pros.hex[p.sid <= .2, ], "pros.test") h2o.glm(x = 3:9, y = 2, training_frame = pros.train, family = "binomial", solver = "L_BFGS", alpha = 0.5, lambda_search = TRUE) stacktrace: t exception 'class java.lang.AssertionError', with msg 'objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696' java.lang.AssertionError: objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696 at hex.optimization.L_BFGS.solve(L_BFGS.java:278) at hex.glm.GLM$LBFGS_ProximalSolver.solve(GLM.java:1422) at hex.optimization.ADMM$L1Solver.solve(ADMM.java:85) at hex.optimization.ADMM$L1Solver.solve(ADMM.java:37) at hex.glm.GLM$GLMSingleLambdaTsk.solve(GLM.java:837) at hex.glm.GLM$GLMSingleLambdaTsk.compute2(GLM.java:1030) at water.H2O$H2OCountedCompleter.compute(H2O.java:682) at jsr166y.CountedCompleter.exec(CountedCompleter.java:429) at jsr166y.ForkJoinTask.doExec(ForkJoinTask.java:263) at jsr166y.ForkJoinPool$WorkQueue.pollAndExecAll(ForkJoinPool.java:914) at jsr166y.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:979) at jsr166y.ForkJoinPool.runWorker(ForkJoinPool.java:1477) at jsr166y.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)

    JIRA | 2 years ago | Sebastian Vidrio
    java.lang.AssertionError: objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696
  2. 0

    R Repro: pros.hex <- h2o.uploadFile(conn, locate("smalldata/prostate/prostate.csv.zip")) pros.hex[,2] <- as.factor(pros.hex[,2]) pros.hex[,4] <- as.factor(pros.hex[,4]) pros.hex[,5] <- as.factor(pros.hex[,5]) pros.hex[,6] <- as.factor(pros.hex[,6]) pros.hex[,9] <- as.factor(pros.hex[,9]) p.sid <- h2o.runif(pros.hex) pros.train <- h2o.assign(pros.hex[p.sid > .2, ], "pros.train") pros.test <- h2o.assign(pros.hex[p.sid <= .2, ], "pros.test") h2o.glm(x = 3:9, y = 2, training_frame = pros.train, family = "binomial", solver = "L_BFGS", alpha = 0.5, lambda_search = TRUE) stacktrace: t exception 'class java.lang.AssertionError', with msg 'objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696' java.lang.AssertionError: objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696 at hex.optimization.L_BFGS.solve(L_BFGS.java:278) at hex.glm.GLM$LBFGS_ProximalSolver.solve(GLM.java:1422) at hex.optimization.ADMM$L1Solver.solve(ADMM.java:85) at hex.optimization.ADMM$L1Solver.solve(ADMM.java:37) at hex.glm.GLM$GLMSingleLambdaTsk.solve(GLM.java:837) at hex.glm.GLM$GLMSingleLambdaTsk.compute2(GLM.java:1030) at water.H2O$H2OCountedCompleter.compute(H2O.java:682) at jsr166y.CountedCompleter.exec(CountedCompleter.java:429) at jsr166y.ForkJoinTask.doExec(ForkJoinTask.java:263) at jsr166y.ForkJoinPool$WorkQueue.pollAndExecAll(ForkJoinPool.java:914) at jsr166y.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:979) at jsr166y.ForkJoinPool.runWorker(ForkJoinPool.java:1477) at jsr166y.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)

    JIRA | 2 years ago | Sebastian Vidrio
    java.lang.AssertionError: objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696
  3. 0
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. java.lang.AssertionError

      objvals from line-search and gradient tasks differ, 0.6670861437437924 != 0.6670984136694696

      at hex.optimization.L_BFGS.solve()
    2. hex.optimization
      L_BFGS.solve
      1. hex.optimization.L_BFGS.solve(L_BFGS.java:278)
      1 frame
    3. hex.glm
      GLM$LBFGS_ProximalSolver.solve
      1. hex.glm.GLM$LBFGS_ProximalSolver.solve(GLM.java:1422)
      1 frame
    4. hex.optimization
      ADMM$L1Solver.solve
      1. hex.optimization.ADMM$L1Solver.solve(ADMM.java:85)
      2. hex.optimization.ADMM$L1Solver.solve(ADMM.java:37)
      2 frames
    5. hex.glm
      GLM$GLMSingleLambdaTsk.compute2
      1. hex.glm.GLM$GLMSingleLambdaTsk.solve(GLM.java:837)
      2. hex.glm.GLM$GLMSingleLambdaTsk.compute2(GLM.java:1030)
      2 frames
    6. water
      H2O$H2OCountedCompleter.compute
      1. water.H2O$H2OCountedCompleter.compute(H2O.java:682)
      1 frame
    7. jsr166y
      ForkJoinWorkerThread.run
      1. jsr166y.CountedCompleter.exec(CountedCompleter.java:429)
      2. jsr166y.ForkJoinTask.doExec(ForkJoinTask.java:263)
      3. jsr166y.ForkJoinPool$WorkQueue.pollAndExecAll(ForkJoinPool.java:914)
      4. jsr166y.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:979)
      5. jsr166y.ForkJoinPool.runWorker(ForkJoinPool.java:1477)
      6. jsr166y.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)
      6 frames