java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch

JIRA | Parag Sanghavi | 2 years ago
tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    While trying to run the following R code on nunes release get the following error java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch at hex.GridSearch$GridSearchProgress.serve(GridSearch.java:74) at water.api.Request.serveGrid(Request.java:165) at water.Request2.superServeGrid(Request2.java:490) at water.Request2.serveGrid(Request2.java:411) at water.api.Request.serve(Request.java:142) at water.api.RequestServer.serve(RequestServer.java:518) at water.NanoHTTPD$HTTPSession.run(NanoHTTPD.java:425) at java.lang.Thread.run(Thread.java:745) R script : # The following two commands remove any previously installed H2O packages for R. if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") } # Next, we download, install and initialize the H2O package for R. install.packages("h2o", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-nunes/2/R", getOption("repos")))) library(h2o) h = h2o.init() pathToFile = "/Users/paragsanghavi/Documents/h2o/smalldata/airlines/AirlinesTrain.csv.zip" data.hex = h2o.importFile(h, pathToFile) ## Summary stats, columns to ignore, quantiles and histograms summary(data.hex) # Constructing test and train sets by sampling data.split = h2o.splitFrame(data = data.hex,ratios = 0.85) data.train = data.split[[1]] data.test = data.split[[2]] # Set predictor and response variables # Print the header of the dataset myY = "IsDepDelayed" myX = c("Origin", "Dest", "fDayofMonth", "fYear", "UniqueCarrier", "fDayOfWeek", "fMonth", "DepTime", "ArrTime", "Distance") ## Deep Learning epoch = 10 data.dl = h2o.deeplearning(y = "IsDepDelayed", x = myX, data = data.train, classification=TRUE, hidden=c(1000), hidden_dropout_ratios= c(0.5), epochs = 1) Apparently , specifying c(0.5) in the hidden dropout ratio causes this problem

    JIRA | 2 years ago | Parag Sanghavi
    java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch
  2. 0

    While trying to run the following R code on nunes release get the following error java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch at hex.GridSearch$GridSearchProgress.serve(GridSearch.java:74) at water.api.Request.serveGrid(Request.java:165) at water.Request2.superServeGrid(Request2.java:490) at water.Request2.serveGrid(Request2.java:411) at water.api.Request.serve(Request.java:142) at water.api.RequestServer.serve(RequestServer.java:518) at water.NanoHTTPD$HTTPSession.run(NanoHTTPD.java:425) at java.lang.Thread.run(Thread.java:745) R script : # The following two commands remove any previously installed H2O packages for R. if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") } # Next, we download, install and initialize the H2O package for R. install.packages("h2o", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-nunes/2/R", getOption("repos")))) library(h2o) h = h2o.init() pathToFile = "/Users/paragsanghavi/Documents/h2o/smalldata/airlines/AirlinesTrain.csv.zip" data.hex = h2o.importFile(h, pathToFile) ## Summary stats, columns to ignore, quantiles and histograms summary(data.hex) # Constructing test and train sets by sampling data.split = h2o.splitFrame(data = data.hex,ratios = 0.85) data.train = data.split[[1]] data.test = data.split[[2]] # Set predictor and response variables # Print the header of the dataset myY = "IsDepDelayed" myX = c("Origin", "Dest", "fDayofMonth", "fYear", "UniqueCarrier", "fDayOfWeek", "fMonth", "DepTime", "ArrTime", "Distance") ## Deep Learning epoch = 10 data.dl = h2o.deeplearning(y = "IsDepDelayed", x = myX, data = data.train, classification=TRUE, hidden=c(1000), hidden_dropout_ratios= c(0.5), epochs = 1) Apparently , specifying c(0.5) in the hidden dropout ratio causes this problem

    JIRA | 2 years ago | Parag Sanghavi
    java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch
  3. 0

    Shared hosting Bungeecord problems.

    GitHub | 3 years ago | Arksenu
    java.lang.ClassCastException: bka cannot be cast to fs All my servers are set to onlinemode: false Here is my config.yml groups: arksenu: - admin disabled_commands: - find player_limit: -1 stats: 347d1d62-6fb6-4869-bd43-7d0745de8e3c permissions: default: - bungeecord.command.server - bungeecord.command.list admin: - bungeecord.command.ip - bungeecord.command.alert - bungeecord.command.end - bungeecord.command.reload listeners: - max_players: 18 fallback_server: hub host: 0.0.0.0:35289 bind_local_address: true ping_passthrough: false tab_list: GLOBAL_PING default_server: hub forced_hosts: pvp.md-5.net: hub tab_size: 60 force_default_server: true motd: ’Network’ query_enabled: false query_port: 25565 timeout: 30000 connection_throttle: 4000 servers: hub: address: 108.170.8.146:35289 restricted: false motd: test UvGames: address: 66.85.165.170:26200 restricted: false motd: test UvPrison: address: 66.85.128.90:25928 restricted: false motd: test ip_forward: false online_mode: true And here is my console message -> UpstreamBridge has disconnected disconnected with: Exception Connecting:RuntimeException : Server is online mode! @ net.md_5.bungee.ServerConnector:188
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    Shared hosting Bungeecord problems.

    GitHub | 3 years ago | Arksenu
    java.lang.ClassCastException: bka cannot be cast to fs All my servers are set to onlinemode: false Here is my config.yml groups: arksenu: - admin disabled_commands: - find player_limit: -1 stats: 347d1d62-6fb6-4869-bd43-7d0745de8e3c permissions: default: - bungeecord.command.server - bungeecord.command.list admin: - bungeecord.command.ip - bungeecord.command.alert - bungeecord.command.end - bungeecord.command.reload listeners: - max_players: 18 fallback_server: hub host: 0.0.0.0:35289 bind_local_address: true ping_passthrough: false tab_list: GLOBAL_PING default_server: hub forced_hosts: pvp.md-5.net: hub tab_size: 60 force_default_server: true motd: ’Network’ query_enabled: false query_port: 25565 timeout: 30000 connection_throttle: 4000 servers: hub: address: 108.170.8.146:35289 restricted: false motd: test UvGames: address: 66.85.165.170:26200 restricted: false motd: test UvPrison: address: 66.85.128.90:25928 restricted: false motd: test ip_forward: false online_mode: true And here is my console message -> UpstreamBridge has disconnected disconnected with: Exception Connecting:RuntimeException : Server is online mode! @ net.md_5.bungee.ServerConnector:188
  6. 0

    Help:basic RMI question

    Google Groups | 2 decades ago | Paolo De Lutiis
    java.lang.ClassCastException: serverPackage.ServerClass_Stub at clientPackage.myApplet.init(myApplet.java:line#) at sun.applet.AppletPanel.run(AppletPanel.java:273) at java.lang.Thread.

    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. java.lang.ClassCastException

      hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch

      at hex.GridSearch$GridSearchProgress.serve()
    2. hex
      GridSearch$GridSearchProgress.serve
      1. hex.GridSearch$GridSearchProgress.serve(GridSearch.java:74)
      1 frame
    3. water.api
      Request.serveGrid
      1. water.api.Request.serveGrid(Request.java:165)
      1 frame
    4. water
      Request2.serveGrid
      1. water.Request2.superServeGrid(Request2.java:490)
      2. water.Request2.serveGrid(Request2.java:411)
      2 frames
    5. water.api
      RequestServer.serve
      1. water.api.Request.serve(Request.java:142)
      2. water.api.RequestServer.serve(RequestServer.java:518)
      2 frames
    6. water
      NanoHTTPD$HTTPSession.run
      1. water.NanoHTTPD$HTTPSession.run(NanoHTTPD.java:425)
      1 frame
    7. Java RT
      Thread.run
      1. java.lang.Thread.run(Thread.java:745)
      1 frame