java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch

JIRA | Parag Sanghavi | 2 years ago
  1. 0

    While trying to run the following R code on nunes release get the following error java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch at hex.GridSearch$GridSearchProgress.serve(GridSearch.java:74) at water.api.Request.serveGrid(Request.java:165) at water.Request2.superServeGrid(Request2.java:490) at water.Request2.serveGrid(Request2.java:411) at water.api.Request.serve(Request.java:142) at water.api.RequestServer.serve(RequestServer.java:518) at water.NanoHTTPD$HTTPSession.run(NanoHTTPD.java:425) at java.lang.Thread.run(Thread.java:745) R script : # The following two commands remove any previously installed H2O packages for R. if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") } # Next, we download, install and initialize the H2O package for R. install.packages("h2o", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-nunes/2/R", getOption("repos")))) library(h2o) h = h2o.init() pathToFile = "/Users/paragsanghavi/Documents/h2o/smalldata/airlines/AirlinesTrain.csv.zip" data.hex = h2o.importFile(h, pathToFile) ## Summary stats, columns to ignore, quantiles and histograms summary(data.hex) # Constructing test and train sets by sampling data.split = h2o.splitFrame(data = data.hex,ratios = 0.85) data.train = data.split[[1]] data.test = data.split[[2]] # Set predictor and response variables # Print the header of the dataset myY = "IsDepDelayed" myX = c("Origin", "Dest", "fDayofMonth", "fYear", "UniqueCarrier", "fDayOfWeek", "fMonth", "DepTime", "ArrTime", "Distance") ## Deep Learning epoch = 10 data.dl = h2o.deeplearning(y = "IsDepDelayed", x = myX, data = data.train, classification=TRUE, hidden=c(1000), hidden_dropout_ratios= c(0.5), epochs = 1) Apparently , specifying c(0.5) in the hidden dropout ratio causes this problem

    JIRA | 2 years ago | Parag Sanghavi
    java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch
  2. 0

    While trying to run the following R code on nunes release get the following error java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch at hex.GridSearch$GridSearchProgress.serve(GridSearch.java:74) at water.api.Request.serveGrid(Request.java:165) at water.Request2.superServeGrid(Request2.java:490) at water.Request2.serveGrid(Request2.java:411) at water.api.Request.serve(Request.java:142) at water.api.RequestServer.serve(RequestServer.java:518) at water.NanoHTTPD$HTTPSession.run(NanoHTTPD.java:425) at java.lang.Thread.run(Thread.java:745) R script : # The following two commands remove any previously installed H2O packages for R. if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") } # Next, we download, install and initialize the H2O package for R. install.packages("h2o", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-nunes/2/R", getOption("repos")))) library(h2o) h = h2o.init() pathToFile = "/Users/paragsanghavi/Documents/h2o/smalldata/airlines/AirlinesTrain.csv.zip" data.hex = h2o.importFile(h, pathToFile) ## Summary stats, columns to ignore, quantiles and histograms summary(data.hex) # Constructing test and train sets by sampling data.split = h2o.splitFrame(data = data.hex,ratios = 0.85) data.train = data.split[[1]] data.test = data.split[[2]] # Set predictor and response variables # Print the header of the dataset myY = "IsDepDelayed" myX = c("Origin", "Dest", "fDayofMonth", "fYear", "UniqueCarrier", "fDayOfWeek", "fMonth", "DepTime", "ArrTime", "Distance") ## Deep Learning epoch = 10 data.dl = h2o.deeplearning(y = "IsDepDelayed", x = myX, data = data.train, classification=TRUE, hidden=c(1000), hidden_dropout_ratios= c(0.5), epochs = 1) Apparently , specifying c(0.5) in the hidden dropout ratio causes this problem

    JIRA | 2 years ago | Parag Sanghavi
    java.lang.ClassCastException: hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch
  3. Speed up your debug routine!

    Automated exception search integrated into your IDE

  4. 0

    Memcached Java客户端2.6.1发布 - 编程语言 - ITeye资讯

    iteye.com | 1 year ago
    java.lang.ClassCastException: cannot be cast to

    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. java.lang.ClassCastException

      hex.deeplearning.DeepLearningModel cannot be cast to hex.GridSearch

      at hex.GridSearch$GridSearchProgress.serve()
    2. hex
      GridSearch$GridSearchProgress.serve
      1. hex.GridSearch$GridSearchProgress.serve(GridSearch.java:74)
      1 frame
    3. water.api
      Request.serveGrid
      1. water.api.Request.serveGrid(Request.java:165)
      1 frame
    4. water
      Request2.serveGrid
      1. water.Request2.superServeGrid(Request2.java:490)
      2. water.Request2.serveGrid(Request2.java:411)
      2 frames
    5. water.api
      RequestServer.serve
      1. water.api.Request.serve(Request.java:142)
      2. water.api.RequestServer.serve(RequestServer.java:518)
      2 frames
    6. water
      NanoHTTPD$HTTPSession.run
      1. water.NanoHTTPD$HTTPSession.run(NanoHTTPD.java:425)
      1 frame
    7. Java RT
      Thread.run
      1. java.lang.Thread.run(Thread.java:745)
      1 frame