org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 4, hbase-url): org.apache.phoenix.exception.PhoenixParserException: ERROR 601 (42P00): Syntax error. Encountered "INSERT" at line 1, column 1.

Stack Overflow | D. Müller | 9 months ago
tip
Click on the to mark the solution that helps you, Samebug will learn from it.
As a community member, you’ll be rewarded for you help.
  1. 0

    Apache Phoenix: Save DataFrame to HBase table

    Stack Overflow | 9 months ago | D. Müller
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 4, hbase-url): org.apache.phoenix.exception.PhoenixParserException: ERROR 601 (42P00): Syntax error. Encountered "INSERT" at line 1, column 1.
  2. 0

    RE: Not Serializable exception when integrating SQL and Spark Streaming

    apache.org | 1 year ago
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1435) at org.apache.spark.rdd.RDD.map(RDD.scala:271) at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:78) at org.apache.spark.sql.api.java.JavaSchemaRDD.map(JavaSchemaRDD.scala:42) at com.basic.spark.NumberCount$2.call(NumberCount.java:79) at com.basic.spark.NumberCount$2.call(NumberCount.java:67) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:171) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
  3. 0

    RE: Not Serializable exception when integrating SQL and Spark Streaming

    apache.org | 1 year ago
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1435) at org.apache.spark.rdd.RDD.map(RDD.scala:271) at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:78) at org.apache.spark.sql.api.java.JavaSchemaRDD.map(JavaSchemaRDD.scala:42) at com.basic.spark.NumberCount$2.call(NumberCount.java:79) at com.basic.spark.NumberCount$2.call(NumberCount.java:67) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:171) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.SparkException

      Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 4, hbase-url): org.apache.phoenix.exception.PhoenixParserException: ERROR 601 (42P00): Syntax error. Encountered "INSERT" at line 1, column 1.

      at org.apache.phoenix.exception.PhoenixParserException.newException()
    2. Phoenix Core
      PhoenixConnection.prepareStatement
      1. org.apache.phoenix.exception.PhoenixParserException.newException(PhoenixParserException.java:33)
      2. org.apache.phoenix.parse.SQLParser.parseStatement(SQLParser.java:111)
      3. org.apache.phoenix.jdbc.PhoenixStatement$PhoenixStatementParser.parseStatement(PhoenixStatement.java:1097)
      4. org.apache.phoenix.jdbc.PhoenixStatement.parseStatement(PhoenixStatement.java:1178)
      5. org.apache.phoenix.jdbc.PhoenixPreparedStatement.<init>(PhoenixPreparedStatement.java:95)
      6. org.apache.phoenix.jdbc.PhoenixConnection.prepareStatement(PhoenixConnection.java:622)
      6 frames
    3. org.apache.spark
      JdbcUtils$$anonfun$saveTable$1.apply
      1. org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.insertStatement(JdbcUtils.scala:103)
      2. org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:172)
      3. org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:277)
      4. org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:276)
      4 frames
    4. Spark
      Executor$TaskRunner.run
      1. org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$35.apply(RDD.scala:927)
      2. org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$35.apply(RDD.scala:927)
      3. org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1881)
      4. org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1881)
      5. org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
      6. org.apache.spark.scheduler.Task.run(Task.scala:89)
      7. org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
      7 frames
    5. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames