org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.

mahout-user | Pat Ferrel | 2 years ago
tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    Apache Spark User List - Spark on EC2 error "All masters are unresponsive! Giving up"

    nabble.com | 1 year ago
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  2. 0

    Re: spark-itemsimilarity can't launch on a Spark cluster?

    mahout-user | 2 years ago | Pat Ferrel
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  3. 0

    val rdd = sc.cassandraTable("test", "kv") gives error

    GitHub | 3 years ago | delu2000
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    How to use foreach (each record add to solr) in foreachRDD to spark streaming?

    Stack Overflow | 2 years ago | user1976546
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  6. 0

    Datastax DSE Cassandra, Spark, Shark, Standalone Programm

    Stack Overflow | 2 years ago | richie676
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.

  1. tyson925 1 times, last 3 weeks ago
  2. Nikolay Rybak 1 times, last 4 weeks ago
  3. johnxfly 1 times, last 1 month ago
  4. meneal 1 times, last 7 months ago
20 unregistered visitors
Not finding the right solution?
Take a tour to get the most out of Samebug.

Tired of useless tips?

Automated exception search integrated into your IDE

Root Cause Analysis

  1. org.apache.spark.SparkException

    Job aborted due to stage failure: All masters are unresponsive! Giving up.

    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages()
  2. Spark
    DAGScheduler$$anonfun$abortStage$1.apply
    1. org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1044)
    2. org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1028)
    3. org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1026)
    3 frames
  3. Scala
    ArrayBuffer.foreach
    1. scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    2. scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    2 frames
  4. Spark
    DAGScheduler$$anonfun$handleTaskSetFailed$1.apply
    1. org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026)
    2. org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
    3. org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
    3 frames
  5. Scala
    Option.foreach
    1. scala.Option.foreach(Option.scala:236)
    1 frame
  6. Spark
    DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse
    1. org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634)
    2. org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229)
    2 frames
  7. Akka Actor
    ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec
    1. akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
    2. akka.actor.ActorCell.invoke(ActorCell.scala:456)
    3. akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
    4. akka.dispatch.Mailbox.run(Mailbox.scala:219)
    5. akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
    5 frames
  8. Scala
    ForkJoinWorkerThread.run
    1. scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
    2. scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
    3. scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
    4. scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
    4 frames