org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.

mahout-user | Pat Ferrel | 2 years ago
  1. 0

    Apache Spark User List - Spark on EC2 error "All masters are unresponsive! Giving up"

    nabble.com | 1 year ago
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  2. 0

    Re: spark-itemsimilarity can't launch on a Spark cluster?

    mahout-user | 2 years ago | Pat Ferrel
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  3. 0

    val rdd = sc.cassandraTable("test", "kv") gives error

    GitHub | 2 years ago | delu2000
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    How to use foreach (each record add to solr) in foreachRDD to spark streaming?

    Stack Overflow | 2 years ago | user1976546
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.
  6. 0

    Datastax DSE Cassandra, Spark, Shark, Standalone Programm

    Stack Overflow | 2 years ago | richie676
    org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up.

  1. Nikolay Rybak 1 times, last 1 month ago
  2. tyson925 2 times, last 2 months ago
  3. tyson925 1 times, last 4 months ago
  4. meneal 1 times, last 4 months ago
20 unregistered visitors
Not finding the right solution?
Take a tour to get the most out of Samebug.

Tired of useless tips?

Automated exception search integrated into your IDE

Root Cause Analysis

  1. org.apache.spark.SparkException

    Job aborted due to stage failure: All masters are unresponsive! Giving up.

    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages()
  2. Spark
    DAGScheduler$$anonfun$abortStage$1.apply
    1. org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1044)
    2. org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1028)
    3. org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1026)
    3 frames
  3. Scala
    ArrayBuffer.foreach
    1. scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    2. scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    2 frames
  4. Spark
    DAGScheduler$$anonfun$handleTaskSetFailed$1.apply
    1. org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026)
    2. org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
    3. org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
    3 frames
  5. Scala
    Option.foreach
    1. scala.Option.foreach(Option.scala:236)
    1 frame
  6. Spark
    DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse
    1. org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634)
    2. org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229)
    2 frames
  7. Akka Actor
    ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec
    1. akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
    2. akka.actor.ActorCell.invoke(ActorCell.scala:456)
    3. akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
    4. akka.dispatch.Mailbox.run(Mailbox.scala:219)
    5. akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
    5 frames
  8. Scala
    ForkJoinWorkerThread.run
    1. scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
    2. scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
    3. scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
    4. scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
    4 frames