junit.framework.ComparisonFailure: Expected: Axis #0: {} Axis #1: {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[M]} Axis #2: {[Measures].[Unit Sales]} {[Measures].[vm]} Row #0: 10,771 Row #0: 10,562 Row #0: 12,089 Row #0: 13,574 Row #0: 12,835 Row #0: 12,800 Row #0: 1,064 Row #0: 1,053 Row #0: 12,488 Row #0: 13,591 Row #0: 20,548 Row #0: 21,032 Row #0: 1,096 Row #0: 1,141 Row #0: 11,640 Row #0: 12,936 Row #0: 13,513 Row #0: 11,498 Row #0: 12,068 Row #0: 11,523 Row #0: 17,420 Row #0: 17,837 Row #0: 1,019 Row #0: 1,184 Row #0: 5,007 Row #0: 6,484 Row #1: 10759.0 Row #1: 10759.0 Row #1: 24587.0 Row #1: 24587.0 Row #1: 23835.0 Row #1: 23835.0 Row #1: 1696.0 Row #1: 1696.0 Row #1: 8515.0 Row #1: 8515.0 Row #1: 32393.0 Row #1: 32393.0 Row #1: 2348.0 Row #1: 2348.0 Row #1: 22734.0 Row #1: 22734.0 Row #1: 24110.0 Row #1: 24110.0 Row #1: 11889.0 Row #1: 11889.0 Row #1: 32411.0 Row #1: 32411.0 Row #1: 1860.0 Row #1: 1860.0 Row #1: 10589.0 Row #1: 10589.0 Actual: Axis #0: {} Axis #1: {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[M]} Axis #2: {[Measures].[Unit Sales]} {[Measures].[vm]} Row #0: 1,096 Row #0: 20,548 Row #0: 11,523 Row #0: 12,800 Row #0: 17,837 Row #0: 12,936 Row #0: 12,089 Row #0: 21,032 Row #0: 6,484 Row #0: 1,019 Row #0: 11,498 Row #0: 17,420 Row #0: 1,184 Row #0: 5,007 Row #0: 12,488 Row #0: 13,591 Row #0: 1,053 Row #0: 13,513 Row #0: 12,835 Row #0: 11,640 Row #0: 10,771 Row #0: 1,064 Row #0: 10,562 Row #0: 13,574 Row #0: 12,068 Row #0: 1,141 Row #1: 2348.0 Row #1: 32393.0 Row #1: 11889.0 Row #1: 23835.0 Row #1: 32411.0 Row #1: 22734.0 Row #1: 24587.0 Row #1: 32393.0 Row #1: 10589.0 Row #1: 1860.0 Row #1: 24110.0 Row #1: 32411.0 Row #1: 1860.0 Row #1: 10589.0 Row #1: 8515.0 Row #1: 8515.0 Row #1: 1696.0 Row #1: 24110.0 Row #1: 23835.0 Row #1: 22734.0 Row #1: 10759.0 Row #1: 1696.0 Row #1: 10759.0 Row #1: 24587.0 Row #1: 11889.0 Row #1: 2348.0 Actual java: "Axis #0:\n" + "{}\n" + "Axis #1:\n" + "{[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[M]}\n" + "Axis #2:\n" + "{[Measures].[Unit Sales]}\n" + "{[Measures].[vm]}\n" + "Row #0: 1,096\n" + "Row #0: 20,548\n" + "Row #0: 11,523\n" + "Row #0: 12,800\n" + "Row #0: 17,837\n" + "Row #0: 12,936\n" + "Row #0: 12,089\n" + "Row #0: 21,032\n" + "Row #0: 6,484\n" + "Row #0: 1,019\n" + "Row #0: 11,498\n" + "Row #0: 17,420\n" + "Row #0: 1,184\n" + "Row #0: 5,007\n" + "Row #0: 12,488\n" + "Row #0: 13,591\n" + "Row #0: 1,053\n" + "Row #0: 13,513\n" + "Row #0: 12,835\n" + "Row #0: 11,640\n" + "Row #0: 10,771\n" + "Row #0: 1,064\n" + "Row #0: 10,562\n" + "Row #0: 13,574\n" + "Row #0: 12,068\n" + "Row #0: 1,141\n" + "Row #1: 2348.0\n" + "Row #1: 32393.0\n" + "Row #1: 11889.0\n" + "Row #1: 23835.0\n" + "Row #1: 32411.0\n" + "Row #1: 22734.0\n" + "Row #1: 24587.0\n" + "Row #1: 32393.0\n" + "Row #1: 10589.0\n" + "Row #1: 1860.0\n" + "Row #1: 24110.0\n" + "Row #1: 32411.0\n" + "Row #1: 1860.0\n" + "Row #1: 10589.0\n" + "Row #1: 8515.0\n" + "Row #1: 8515.0\n" + "Row #1: 1696.0\n" + "Row #1: 24110.0\n" + "Row #1: 23835.0\n" + "Row #1: 22734.0\n" + "Row #1: 10759.0\n" + "Row #1: 1696.0\n" + "Row #1: 10759.0\n" + "Row #1: 24587.0\n" + "Row #1: 11889.0\n" + "Row #1: 2348.0\n" <Click to see difference>

Searched on Google with the first line of a JAVA stack trace?

We can recommend more relevant solutions and speed up debugging when you paste your entire stack trace with the exception message. Try a sample exception.

Recommended solutions based on your search

Solutions on the web

via Pentaho BI Platform Tracking by Julian Hyde, 1 year ago
Expected: Axis #0: {} Axis #1: {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los
via Pentaho BI Platform Tracking by Julian Hyde, 1 year ago
Expected: Axis #0: {} Axis #1: {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los
junit.framework.ComparisonFailure: Expected: Axis #0: {} Axis #1: {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[M]} Axis #2: {[Measures].[Unit Sales]} {[Measures].[vm]} Row #0: 10,771 Row #0: 10,562 Row #0: 12,089 Row #0: 13,574 Row #0: 12,835 Row #0: 12,800 Row #0: 1,064 Row #0: 1,053 Row #0: 12,488 Row #0: 13,591 Row #0: 20,548 Row #0: 21,032 Row #0: 1,096 Row #0: 1,141 Row #0: 11,640 Row #0: 12,936 Row #0: 13,513 Row #0: 11,498 Row #0: 12,068 Row #0: 11,523 Row #0: 17,420 Row #0: 17,837 Row #0: 1,019 Row #0: 1,184 Row #0: 5,007 Row #0: 6,484 Row #1: 10759.0 Row #1: 10759.0 Row #1: 24587.0 Row #1: 24587.0 Row #1: 23835.0 Row #1: 23835.0 Row #1: 1696.0 Row #1: 1696.0 Row #1: 8515.0 Row #1: 8515.0 Row #1: 32393.0 Row #1: 32393.0 Row #1: 2348.0 Row #1: 2348.0 Row #1: 22734.0 Row #1: 22734.0 Row #1: 24110.0 Row #1: 24110.0 Row #1: 11889.0 Row #1: 11889.0 Row #1: 32411.0 Row #1: 32411.0 Row #1: 1860.0 Row #1: 1860.0 Row #1: 10589.0 Row #1: 10589.0 Actual: Axis #0: {} Axis #1: {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[M]} {[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[F]} {[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[M]} Axis #2: {[Measures].[Unit Sales]} {[Measures].[vm]} Row #0: 1,096 Row #0: 20,548 Row #0: 11,523 Row #0: 12,800 Row #0: 17,837 Row #0: 12,936 Row #0: 12,089 Row #0: 21,032 Row #0: 6,484 Row #0: 1,019 Row #0: 11,498 Row #0: 17,420 Row #0: 1,184 Row #0: 5,007 Row #0: 12,488 Row #0: 13,591 Row #0: 1,053 Row #0: 13,513 Row #0: 12,835 Row #0: 11,640 Row #0: 10,771 Row #0: 1,064 Row #0: 10,562 Row #0: 13,574 Row #0: 12,068 Row #0: 1,141 Row #1: 2348.0 Row #1: 32393.0 Row #1: 11889.0 Row #1: 23835.0 Row #1: 32411.0 Row #1: 22734.0 Row #1: 24587.0 Row #1: 32393.0 Row #1: 10589.0 Row #1: 1860.0 Row #1: 24110.0 Row #1: 32411.0 Row #1: 1860.0 Row #1: 10589.0 Row #1: 8515.0 Row #1: 8515.0 Row #1: 1696.0 Row #1: 24110.0 Row #1: 23835.0 Row #1: 22734.0 Row #1: 10759.0 Row #1: 1696.0 Row #1: 10759.0 Row #1: 24587.0 Row #1: 11889.0 Row #1: 2348.0 Actual java: "Axis #0:\n" + "{}\n" + "Axis #1:\n" + "{[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Salem].[Store 13], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Tacoma].[Store 17], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Walla Walla].[Store 22], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Yakima].[Store 23], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[OR].[Portland].[Store 11], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Seattle].[Store 15], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[San Diego].[Store 24], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Bremerton].[Store 3], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[San Francisco].[Store 14], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[CA].[Beverly Hills].[Store 6], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[CA].[Los Angeles].[Store 7], [Gender].[All Gender].[M]}\n" + "{[Store].[All Stores].[USA].[WA].[Spokane].[Store 16], [Gender].[All Gender].[F]}\n" + "{[Store].[All Stores].[USA].[WA].[Bellingham].[Store 2], [Gender].[All Gender].[M]}\n" + "Axis #2:\n" + "{[Measures].[Unit Sales]}\n" + "{[Measures].[vm]}\n" + "Row #0: 1,096\n" + "Row #0: 20,548\n" + "Row #0: 11,523\n" + "Row #0: 12,800\n" + "Row #0: 17,837\n" + "Row #0: 12,936\n" + "Row #0: 12,089\n" + "Row #0: 21,032\n" + "Row #0: 6,484\n" + "Row #0: 1,019\n" + "Row #0: 11,498\n" + "Row #0: 17,420\n" + "Row #0: 1,184\n" + "Row #0: 5,007\n" + "Row #0: 12,488\n" + "Row #0: 13,591\n" + "Row #0: 1,053\n" + "Row #0: 13,513\n" + "Row #0: 12,835\n" + "Row #0: 11,640\n" + "Row #0: 10,771\n" + "Row #0: 1,064\n" + "Row #0: 10,562\n" + "Row #0: 13,574\n" + "Row #0: 12,068\n" + "Row #0: 1,141\n" + "Row #1: 2348.0\n" + "Row #1: 32393.0\n" + "Row #1: 11889.0\n" + "Row #1: 23835.0\n" + "Row #1: 32411.0\n" + "Row #1: 22734.0\n" + "Row #1: 24587.0\n" + "Row #1: 32393.0\n" + "Row #1: 10589.0\n" + "Row #1: 1860.0\n" + "Row #1: 24110.0\n" + "Row #1: 32411.0\n" + "Row #1: 1860.0\n" + "Row #1: 10589.0\n" + "Row #1: 8515.0\n" + "Row #1: 8515.0\n" + "Row #1: 1696.0\n" + "Row #1: 24110.0\n" + "Row #1: 23835.0\n" + "Row #1: 22734.0\n" + "Row #1: 10759.0\n" + "Row #1: 1696.0\n" + "Row #1: 10759.0\n" + "Row #1: 24587.0\n" + "Row #1: 11889.0\n" + "Row #1: 2348.0\n" <Click to see difference>
at mondrian.test.TestContext.assertEqualsVerbose(TestContext.java:1014)
at mondrian.test.TestContext.assertEqualsVerbose(TestContext.java:972)
at mondrian.test.TestContext.assertEqualsVerbose(TestContext.java:950)
at mondrian.test.TestContext.assertQueryReturns(TestContext.java:918)
at mondrian.test.FoodMartTestCase.assertQueryReturns(FoodMartTestCase.java:125)
at mondrian.rolap.NonEmptyTest.testCrossjoinWithOneDimensionThatDoesNotJoinToBothBaseCubes(NonEmptyTest.java:3537)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

Users with the same issue

You are the first who have seen this exception. Write a tip to help other users and build your expert profile.

Know the solutions? Share your knowledge to help other developers to debug faster.