org.apache.spark.sql.AnalysisException: cannot resolve '`t1.value`' given input columns: [value];

github.com | 4 months ago
  1. 0

    getting the latest changes from apache/spark repo by skaarthik · Pull Request #1 · Microsoft/spark · GitHub

    github.com | 4 months ago
    org.apache.spark.sql.AnalysisException: cannot resolve '`t1.value`' given input columns: [value];
  2. 0

    how to avoid spark-submit cache

    Stack Overflow | 4 weeks ago | user1615666
    org.apache.spark.sql.AnalysisException: cannot resolve 'XXX' (string and boolean).;
  3. 0

    My code: {quote} case class TestData(key: Int, value: String) case class TestData2(a: Int, b: Int) import org.apache.spark.sql.execution.joins._ import sqlContext.implicits._ val testData = sc.parallelize( (1 to 100).map(i => TestData(i, i.toString))).toDF() testData.registerTempTable("testData") val testData2 = sc.parallelize( TestData2(1, 1) :: TestData2(1, 2) :: TestData2(2, 1) :: TestData2(2, 2) :: TestData2(3, 1) :: TestData2(3, 2) :: Nil, 2).toDF() testData2.registerTempTable("testData2") //val tmp = sqlContext.sql("SELECT * FROM testData *LEFT SEMI JOIN* testData2 ON key = a ") val tmp = sqlContext.sql("SELECT testData2.b, count(testData2.b) FROM testData *LEFT SEMI JOIN* testData2 ON key = testData2.a group by testData2.b") tmp.explain() {quote} Error log: {quote} org.apache.spark.sql.AnalysisException: cannot resolve 'testData2.b' given input columns key, value; line 1 pos 108 at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3$$anonfun$apply$1.applyOrElse(CheckAnalysis.scala:48) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3$$anonfun$apply$1.applyOrElse(CheckAnalysis.scala:45) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:250) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:250) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:50) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:249) at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionUp$1(QueryPlan.scala:103) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2$$anonfun$apply$2.apply(QueryPlan.scala:117) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.immutable.List.foreach(List.scala:318) {quote} {quote}SELECT * FROM testData LEFT SEMI JOIN testData2 ON key = a{quote} is correct, {quote} SELECT a FROM testData LEFT SEMI JOIN testData2 ON key = a SELECT max(value) FROM testData LEFT SEMI JOIN testData2 ON key = a group by b SELECT max(value) FROM testData LEFT SEMI JOIN testData2 ON key = testData2.a group by testData2.b SELECT testData2.b, count(testData2.b) FROM testData LEFT SEMI JOIN testData2 ON key = testData2.a group by testData2.b {quote} are incorrect.

    Apache's JIRA Issue Tracker | 2 years ago | Zhichao Zhang
    org.apache.spark.sql.AnalysisException: cannot resolve 'testData2.b' given input columns key, value; line 1 pos 108
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    My code: {quote} case class TestData(key: Int, value: String) case class TestData2(a: Int, b: Int) import org.apache.spark.sql.execution.joins._ import sqlContext.implicits._ val testData = sc.parallelize( (1 to 100).map(i => TestData(i, i.toString))).toDF() testData.registerTempTable("testData") val testData2 = sc.parallelize( TestData2(1, 1) :: TestData2(1, 2) :: TestData2(2, 1) :: TestData2(2, 2) :: TestData2(3, 1) :: TestData2(3, 2) :: Nil, 2).toDF() testData2.registerTempTable("testData2") //val tmp = sqlContext.sql("SELECT * FROM testData *LEFT SEMI JOIN* testData2 ON key = a ") val tmp = sqlContext.sql("SELECT testData2.b, count(testData2.b) FROM testData *LEFT SEMI JOIN* testData2 ON key = testData2.a group by testData2.b") tmp.explain() {quote} Error log: {quote} org.apache.spark.sql.AnalysisException: cannot resolve 'testData2.b' given input columns key, value; line 1 pos 108 at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3$$anonfun$apply$1.applyOrElse(CheckAnalysis.scala:48) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$apply$3$$anonfun$apply$1.applyOrElse(CheckAnalysis.scala:45) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:250) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:250) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:50) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:249) at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$transformExpressionUp$1(QueryPlan.scala:103) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2$$anonfun$apply$2.apply(QueryPlan.scala:117) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.immutable.List.foreach(List.scala:318) {quote} {quote}SELECT * FROM testData LEFT SEMI JOIN testData2 ON key = a{quote} is correct, {quote} SELECT a FROM testData LEFT SEMI JOIN testData2 ON key = a SELECT max(value) FROM testData LEFT SEMI JOIN testData2 ON key = a group by b SELECT max(value) FROM testData LEFT SEMI JOIN testData2 ON key = testData2.a group by testData2.b SELECT testData2.b, count(testData2.b) FROM testData LEFT SEMI JOIN testData2 ON key = testData2.a group by testData2.b {quote} are incorrect.

    Apache's JIRA Issue Tracker | 2 years ago | Zhichao Zhang
    org.apache.spark.sql.AnalysisException: cannot resolve 'testData2.b' given input columns key, value; line 1 pos 108
  6. 0

    Spark ML indexer cannot resolve DataFrame column name with dots?

    Stack Overflow | 11 months ago | Joshua Taylor
    org.apache.spark.sql.AnalysisException: cannot resolve 'a.b' given input columns a.b;

    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.sql.AnalysisException

      cannot resolve '`t1.value`' given input columns: [value];

      at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis()
    2. Spark Project Catalyst
      TreeNode$$anonfun$transformUp$1.apply
      1. org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
      2. org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:62)
      3. org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:59)
      4. org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:287)
      5. org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:287)
      5 frames