java.lang.Exception: Problem with options to 'LearnModel'.

Google Groups | Zara Rezaie | 9 months ago
tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    "Not found class moa.DoTask" problem while using weka classifiers

    Google Groups | 9 months ago | Zara Rezaie
    java.lang.Exception: Problem with options to 'LearnModel'.
  2. 0

    Problem with Evaluate prequential on singleclassifier using command line

    Google Groups | 3 years ago | Abril Uriarte
    java.lang.Exception: Problem with options to 'EvaluatePrequential'. Valid options for EvaluatePrequential: -l learner (default: bayes.NaiveBayes) Classifier to train. -s stream (default: generators.RandomTreeGenerator) Stream to learn from. -e evaluator (default: WindowClassificationPerformanceEvaluator) Classification performance evaluation method. -i instanceLimit (default: 100000000) Maximum number of instances to test/train on (-1 = no limit). -t timeLimit (default: -1) Maximum number of seconds to test/train for (-1 = no limit). -f sampleFrequency (default: 100000) How many instances between samples of the learning performance. -q memCheckFrequency (default: 100000) How many instances between memory bound checks. -d dumpFile File to append intermediate csv results to. -o outputPredictionFile File to append output predictions to. -w width (default: 1000) Size of Window -a alpha (default: 0.01) Fading factor or exponential smoothing factor -O taskResultFile File to save the final result of the task to.
  3. 0

    Run Weka Classifiers through MOA

    Stack Overflow | 2 years ago
    java.lang.Exception: Problem creating instance of class: LearnModel
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    Input file

    Google Groups | 2 years ago | Domenico Mancuso
    java.lang.Exception: Problem with options to 'EvaluatePrequentialRegression'. Valid options for EvaluatePrequentialRegression: -l learner (default: trees.FIMTDD) Classifier to train. -s stream (default: generators.RandomTreeGenerator) Stream to learn from. -e evaluator (default: WindowRegressionPerformanceEvaluator) Classification performance evaluation method. -i instanceLimit (default: 100000000) Maximum number of instances to test/train on (-1 = no limit). -t timeLimit (default: -1) Maximum number of seconds to test/train for (-1 = no limit). -f sampleFrequency (default: 100000) How many instances between samples of the learning performance. -q memCheckFrequency (default: 100000) How many instances between memory bound checks. -d dumpFile File to append intermediate csv results to. -o outputPredictionFile File to append output predictions to. -w width (default: 1000) Size of Window -a alpha (default: 0.01) Fading factor or exponential smoothing factor -O taskResultFile File to save the final result of the task to.

    Root Cause Analysis

    1. java.lang.Exception

      Class not found: WekaClassifier

      at moa.options.ClassOption.cliStringToObject()
    2. moa.options
      ClassOption.cliStringToObject
      1. moa.options.ClassOption.cliStringToObject(ClassOption.java:128)
      2. moa.options.ClassOption.setValueViaCLIString(ClassOption.java:67)
      3. moa.options.Options.setViaCLIString(Options.java:145)
      4. moa.options.ClassOption.cliStringToObject(ClassOption.java:154)
      4 frames
    3. moa
      DoTask.main
      1. moa.DoTask.main(DoTask.java:130)
      1 frame