org.apache.spark.SparkException: Task not serializable

Stack Overflow | Feynman27 | 4 months ago
  1. 0

    Applying a map function to all elements of column in a Spark dataframe

    Stack Overflow | 4 months ago | Feynman27
    org.apache.spark.SparkException: Task not serializable
  2. 0

    GitHub comment 9#248278919

    GitHub | 3 months ago | burgerdev
    org.apache.spark.SparkException: Task not serializable
  3. 0

    Spark tries to serialize wisp Plot? Bug?

    GitHub | 3 months ago | raproth
    org.apache.spark.SparkException: Task not serializable
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    SparkR window function : Error "Task not serializable"

    Stack Overflow | 11 months ago | Villo
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
  6. 0

    SparkSQL Add a new column to dataframe base on existing column

    Stack Overflow | 1 year ago | user5264280
    org.apache.spark.SparkException: Task not serializable

    1 unregistered visitors
    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.SparkException

      Task not serializable

      at org.apache.spark.util.ClosureCleaner$.ensureSerializable()
    2. Spark
      RDD.mapPartitions
      1. org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
      2. org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
      3. org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
      4. org.apache.spark.SparkContext.clean(SparkContext.scala:2060)
      5. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:707)
      6. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:706)
      7. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
      8. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
      9. org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
      10. org.apache.spark.rdd.RDD.mapPartitions(RDD.scala:706)
      10 frames
    3. Spark Project SQL
      SparkPlan$$anonfun$execute$5.apply
      1. org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56)
      2. org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
      3. org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
      3 frames
    4. Spark
      RDDOperationScope$.withScope
      1. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
      1 frame
    5. Spark Project SQL
      SQLExecution$.withNewExecutionId
      1. org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
      2. org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:187)
      3. org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
      4. org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
      5. org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
      6. org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
      7. org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
      7 frames