java.lang.NegativeArraySizeException

Apache's JIRA Issue Tracker | Erik Selin | 1 year ago
  1. 0

    When running a large spark sql query including multiple joins I see tasks failing with the following trace: {code} java.lang.NegativeArraySizeException at org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder.grow(BufferHolder.java:36) at org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter.write(UnsafeRowWriter.java:188) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source) at org.apache.spark.sql.execution.joins.OneSideOuterIterator.getRow(SortMergeOuterJoin.scala:288) at org.apache.spark.sql.execution.RowIteratorToScala.next(RowIterator.scala:76) at org.apache.spark.sql.execution.RowIteratorToScala.next(RowIterator.scala:62) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:164) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:88) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) {code} From the spark code it looks like this is due to a integer overflow when growing a buffer length. The offending line {{BufferHolder.java:36}} is the following in the version I'm running: {code} final byte[] tmp = new byte[length * 2]; {code} This seems to indicate to me that this buffer will never be able to hold more then 2G worth of data. And likely will hold even less since any length > 1073741824 will cause a integer overflow and turn the new buffer size negative. I hope I'm simply missing some critical config setting but it still seems weird that we have a (rather low) upper limit on these buffers.

    Apache's JIRA Issue Tracker | 1 year ago | Erik Selin
    java.lang.NegativeArraySizeException
  2. 0

    Error with large models - Issues - ImageJ Forum

    imagej.net | 1 month ago
    java.lang.NegativeArraySizeException
  3. Speed up your debug routine!

    Automated exception search integrated into your IDE

  4. 0

    NegativeArraySizeException‘΍ô(Javaƒ}ƒXƒ^[)

    ne.jp | 1 month ago
    java.lang.NegativeArraySizeException

    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. java.lang.NegativeArraySizeException

      No message provided

      at org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder.grow()
    2. Spark Project Catalyst
      GeneratedClass$SpecificUnsafeProjection.apply
      1. org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder.grow(BufferHolder.java:36)
      2. org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter.write(UnsafeRowWriter.java:188)
      3. org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
      4. org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
      4 frames
    3. Spark Project SQL
      RowIteratorToScala.next
      1. org.apache.spark.sql.execution.joins.OneSideOuterIterator.getRow(SortMergeOuterJoin.scala:288)
      2. org.apache.spark.sql.execution.RowIteratorToScala.next(RowIterator.scala:76)
      3. org.apache.spark.sql.execution.RowIteratorToScala.next(RowIterator.scala:62)
      3 frames
    4. Scala
      Iterator$$anon$11.next
      1. scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
      1 frame
    5. Spark
      Executor$TaskRunner.run
      1. org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:164)
      2. org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
      3. org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
      4. org.apache.spark.scheduler.Task.run(Task.scala:88)
      5. org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
      5 frames
    6. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames