java.lang.NumberFormatException: For input string: "28+03"

tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    Defining DateType conversion for DataFrame schema in Spark

    Stack Overflow | 7 months ago | Mikhail Tsaplin
    java.lang.NumberFormatException: For input string: "28+03"
  2. 0

    Convert `Java.lang.String` TO `oracle.sql.TIMESTAMPTZ`

    Stack Overflow | 10 months ago | Ashish Pancholi
    java.lang.NumberFormatException: For input string: "781 8:000"
  3. 0

    java.lang.IllegalArgumentException at java.sql.Timestamp.valueOf

    Oracle Community | 1 decade ago | 843854
    java.lang.NumberFormatException: 156.00000
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

    1 unregistered visitors

    Root Cause Analysis

    1. java.lang.NumberFormatException

      For input string: "28+03"

      at java.lang.NumberFormatException.forInputString()
    2. Java RT
      Timestamp.valueOf
      1. java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
      2. java.lang.Integer.parseInt(Integer.java:580)
      3. java.lang.Integer.parseInt(Integer.java:615)
      4. java.sql.Timestamp.valueOf(Timestamp.java:259)
      4 frames
    3. Spark Project Catalyst
      DateTimeUtils$.stringToTime
      1. org.apache.spark.sql.catalyst.util.DateTimeUtils$.stringToTime(DateTimeUtils.scala:135)
      1 frame
    4. org.apache.spark
      CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$1.apply
      1. org.apache.spark.sql.execution.datasources.csv.CSVTypeCast$.castTo(CSVInferSchema.scala:291)
      2. org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:115)
      3. org.apache.spark.sql.execution.datasources.csv.CSVRelation$$anonfun$csvParser$3.apply(CSVRelation.scala:84)
      4. org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$1.apply(CSVFileFormat.scala:125)
      5. org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader$1$$anonfun$apply$1.apply(CSVFileFormat.scala:124)
      5 frames