java.lang.Exception: Partition[1]: FATAL ERROR for job S2V_job5364016263210767025. Job status information is available in the Vertica table public.S2V_JOB_STATUS. . Failed rows summary: FailedRowsPercent=1.0; failedRowsPercentTolerance=0.0: FAILED. NOT OK to commit rows to database. Too many rows were rejected. . Unable to create/insert into target table public.sometable

tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    Vertica Spark Connector - S2V - FAILED. NOT OK to commit rows to database. Too many rows were rejected

    Stack Overflow | 6 months ago | Syed Muhammad Humayun
    java.lang.Exception: Partition[1]: FATAL ERROR for job S2V_job5364016263210767025. Job status information is available in the Vertica table public.S2V_JOB_STATUS. . Failed rows summary: FailedRowsPercent=1.0; failedRowsPercentTolerance=0.0: FAILED. NOT OK to commit rows to database. Too many rows were rejected. . Unable to create/insert into target table public.sometable

    Root Cause Analysis

    1. java.lang.Exception

      Partition[1]: FATAL ERROR for job S2V_job5364016263210767025. Job status information is available in the Vertica table public.S2V_JOB_STATUS. . Failed rows summary: FailedRowsPercent=1.0; failedRowsPercentTolerance=0.0: FAILED. NOT OK to commit rows to database. Too many rows were rejected. . Unable to create/insert into target table public.sometable

      at com.vertica.spark.s2v.S2V.tryTofinalizeSaveToVertica()
    2. com.vertica.spark
      S2V$$anonfun$2.apply
      1. com.vertica.spark.s2v.S2V.tryTofinalizeSaveToVertica(S2V.scala:746)
      2. com.vertica.spark.s2v.S2V$$anonfun$2.apply(S2V.scala:226)
      3. com.vertica.spark.s2v.S2V$$anonfun$2.apply(S2V.scala:128)
      3 frames
    3. Spark
      Executor$TaskRunner.run
      1. org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$22.apply(RDD.scala:745)
      2. org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$22.apply(RDD.scala:745)
      3. org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
      4. org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
      5. org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
      6. org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
      7. org.apache.spark.scheduler.Task.run(Task.scala:89)
      8. org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
      8 frames
    4. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames