org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 744.0 failed 1 times, most recent failure: Lost task 1.0 in stage 744.0 (TID 1237, localhost): java.lang.Exception: Partition[1]: FATAL ERROR for job S2V_job5364016263210767025. Job status information is available in the Vertica table public.S2V_JOB_STATUS. . Failed rows summary: FailedRowsPercent=1.0; failedRowsPercentTolerance=0.0: FAILED. NOT OK to commit rows to database. Too many rows were rejected. . Unable to create/insert into target table public.sometable

tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    Vertica Spark Connector - S2V - FAILED. NOT OK to commit rows to database. Too many rows were rejected

    Stack Overflow | 8 months ago | Syed Muhammad Humayun
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 744.0 failed 1 times, most recent failure: Lost task 1.0 in stage 744.0 (TID 1237, localhost): java.lang.Exception: Partition[1]: FATAL ERROR for job S2V_job5364016263210767025. Job status information is available in the Vertica table public.S2V_JOB_STATUS. . Failed rows summary: FailedRowsPercent=1.0; failedRowsPercentTolerance=0.0: FAILED. NOT OK to commit rows to database. Too many rows were rejected. . Unable to create/insert into target table public.sometable
  2. 0

    RE: Not Serializable exception when integrating SQL and Spark Streaming

    apache.org | 2 years ago
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1435) at org.apache.spark.rdd.RDD.map(RDD.scala:271) at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:78) at org.apache.spark.sql.api.java.JavaSchemaRDD.map(JavaSchemaRDD.scala:42) at com.basic.spark.NumberCount$2.call(NumberCount.java:79) at com.basic.spark.NumberCount$2.call(NumberCount.java:67) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:171) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
  3. 0

    RE: Not Serializable exception when integrating SQL and Spark Streaming

    apache.org | 1 year ago
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1435) at org.apache.spark.rdd.RDD.map(RDD.scala:271) at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:78) at org.apache.spark.sql.api.java.JavaSchemaRDD.map(JavaSchemaRDD.scala:42) at com.basic.spark.NumberCount$2.call(NumberCount.java:79) at com.basic.spark.NumberCount$2.call(NumberCount.java:67) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:171) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.SparkException

      Job aborted due to stage failure: Task 1 in stage 744.0 failed 1 times, most recent failure: Lost task 1.0 in stage 744.0 (TID 1237, localhost): java.lang.Exception: Partition[1]: FATAL ERROR for job S2V_job5364016263210767025. Job status information is available in the Vertica table public.S2V_JOB_STATUS. . Failed rows summary: FailedRowsPercent=1.0; failedRowsPercentTolerance=0.0: FAILED. NOT OK to commit rows to database. Too many rows were rejected. . Unable to create/insert into target table public.sometable

      at com.vertica.spark.s2v.S2V.tryTofinalizeSaveToVertica()
    2. com.vertica.spark
      S2V$$anonfun$2.apply
      1. com.vertica.spark.s2v.S2V.tryTofinalizeSaveToVertica(S2V.scala:746)
      2. com.vertica.spark.s2v.S2V$$anonfun$2.apply(S2V.scala:226)
      3. com.vertica.spark.s2v.S2V$$anonfun$2.apply(S2V.scala:128)
      3 frames
    3. Spark
      Executor$TaskRunner.run
      1. org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$22.apply(RDD.scala:745)
      2. org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$22.apply(RDD.scala:745)
      3. org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
      4. org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
      5. org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
      6. org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
      7. org.apache.spark.scheduler.Task.run(Task.scala:89)
      8. org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
      8 frames
    4. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames