org.apache.spark.SparkException: Currently, LogisticRegression with ElasticNet in ML package only supports binary classification. Found 5 in the input dataset.

Stack Overflow | krishna Prasad | 5 months ago
  1. 0

    Logistic Regression as multiclass classification using PySpark and issues

    Stack Overflow | 5 months ago | krishna Prasad
    org.apache.spark.SparkException: Currently, LogisticRegression with ElasticNet in ML package only supports binary classification. Found 5 in the input dataset.
  2. 0

    Issues with Logistic Regression for multiclass classification using PySpark

    Stack Overflow | 5 months ago | krishna Prasad
    org.apache.spark.SparkException: Currently, LogisticRegression with ElasticNet in ML package only supports binary classification. Found 5 in the input dataset.
  3. 0

    Logistic Regression as multiclass classification using PySpark and issues

    Data Science | 5 months ago | krishna Prasad
    org.apache.spark.SparkException: Currently, LogisticRegression with ElasticNet in ML package only supports binary classification. Found 5 in the input dataset.
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    Error on using glm with SparkR

    Stack Overflow | 10 months ago | hbabbar
    org.apache.spark.SparkException: Currently, LogisticRegression with ElasticNet in ML package only supports binary classification. Found 5 in the input dataset.
  6. 0
    Compile your code with scala version 2.10.x instead of 2.11.x
Not finding the right solution?
Take a tour to get the most out of Samebug.

Tired of useless tips?

Automated exception search integrated into your IDE

Root Cause Analysis

  1. org.apache.spark.SparkException

    Currently, LogisticRegression with ElasticNet in ML package only supports binary classification. Found 5 in the input dataset.

    at org.apache.spark.ml.classification.LogisticRegression.train()
  2. Spark Project ML Library
    Predictor.fit
    1. org.apache.spark.ml.classification.LogisticRegression.train(LogisticRegression.scala:290)
    2. org.apache.spark.ml.classification.LogisticRegression.train(LogisticRegression.scala:159)
    3. org.apache.spark.ml.Predictor.fit(Predictor.scala:90)
    4. org.apache.spark.ml.Predictor.fit(Predictor.scala:71)
    4 frames
  3. Java RT
    Method.invoke
    1. sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    2. sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    3. sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    4. java.lang.reflect.Method.invoke(Method.java:498)
    4 frames
  4. Py4J
    GatewayConnection.run
    1. py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
    2. py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
    3. py4j.Gateway.invoke(Gateway.java:259)
    4. py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
    5. py4j.commands.CallCommand.execute(CallCommand.java:79)
    6. py4j.GatewayConnection.run(GatewayConnection.java:209)
    6 frames
  5. Java RT
    Thread.run
    1. java.lang.Thread.run(Thread.java:745)
    1 frame