Searched on Google with the first line of a JAVA stack trace?

We can recommend more relevant solutions and speed up debugging when you paste your entire stack trace with the exception message. Try a sample exception.

Recommended solutions based on your search

Solutions on the web

via GitHub by arahuja
, 1 year ago
Exiting due to error from cluster scheduler: All masters are unresponsive! Giving up. at org.apache.spark.scheduler.TaskSchedulerImpl.error( TaskSchedulerImpl.scala:438) at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.dead
org.apache.spark.SparkException: Exiting due to error from cluster
 scheduler: All masters are unresponsive! Giving up.
 at org.apache.spark.scheduler.TaskSchedulerImpl.error(
 TaskSchedulerImpl.scala:438)
 at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.dead(
 SparkDeploySchedulerBackend.scala:124)
 at org.apache.spark.deploy.client.AppClient$ClientEndpoint.markDead(
 AppClient.scala:264)
 at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anon$2$$
 anonfun$run$1.apply$mcV$sp(AppClient.scala:134)	at org.apache.spark.util.Utils$.tryOrExit(Utils.scala:1163)