org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 4.0 (TID 4) had a not serializable result: org.neo4j.driver.internal.InternalNode Serialization stack: - object not serializable (class: org.neo4j.driver.internal.InternalNode, value: node<10516047>) - element of array (index: 0) - array (class [Ljava.lang.Object;, size 1) - field (class: org.apache.spark.sql.catalyst.expressions.GenericRow, name: values, type: class [Ljava.lang.Object;) - object (class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema, [node<10516047>]) - element of array (index: 0) - array (class [Lorg.apache.spark.sql.Row;, size 1)

Stack Overflow | kaxil | 8 months ago
tip
Click on the to mark the solution that helps you, Samebug will learn from it.
As a community member, you’ll be rewarded for you help.
  1. 0

    Using neo4j-spark-connector to find specific nodes rather than count & save result in RDD

    Stack Overflow | 8 months ago | kaxil
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 4.0 (TID 4) had a not serializable result: org.neo4j.driver.internal.InternalNode Serialization stack: - object not serializable (class: org.neo4j.driver.internal.InternalNode, value: node<10516047>) - element of array (index: 0) - array (class [Ljava.lang.Object;, size 1) - field (class: org.apache.spark.sql.catalyst.expressions.GenericRow, name: values, type: class [Ljava.lang.Object;) - object (class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema, [node<10516047>]) - element of array (index: 0) - array (class [Lorg.apache.spark.sql.Row;, size 1)
  2. 0

    GitHub comment 1#253804751

    GitHub | 7 months ago | sudcha
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 130.0 failed 1 times, most recent failure: Lost task 0.0 in stage 130.0 (TID 132, localhost): java.lang.ClassCastException Driver stacktrace:
  3. 0

    Spark Executor memory timeout failure

    Stack Overflow | 7 months ago | sarthak
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 9.0 failed 1 times, most recent failure: Lost task 0.0 in stage 9.0 (TID 98, localhost): ExecutorLostFailure (executor driver exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 247686 ms Driver stacktrace:
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    How to fix "java.io.NotSerializableException: org.apache.kafka.clients.consumer.ConsumerRecord" in Spark Streaming Kafka Consumer?

    Stack Overflow | 6 months ago | Chenghao Lv
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord Serialization stack: - object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = local1, partition = 0, offset = 10000, CreateTime = 1479012919187, checksum = 1713832959, serialized key size = -1, serialized value size = 1, key = null, value = a)) - element of array (index: 0) - array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
  6. 0

    How to know that CaffeOnSpark is running in GPU mode?

    GitHub | 6 months ago | chris0927
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 5, 10.11.35.201): ExecutorLostFailure (executor 3 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages. Driver stacktrace:

  1. johnxfly 1 times, last 2 months ago
  2. tyson925 3 times, last 3 months ago
  3. Nikolay Rybak 1 times, last 4 months ago
  4. meneal 1 times, last 10 months ago
20 unregistered visitors
Not finding the right solution?
Take a tour to get the most out of Samebug.

Tired of useless tips?

Automated exception search integrated into your IDE

Root Cause Analysis

  1. org.apache.spark.SparkException

    Job aborted due to stage failure: Task 0.0 in stage 4.0 (TID 4) had a not serializable result: org.neo4j.driver.internal.InternalNode Serialization stack: - object not serializable (class: org.neo4j.driver.internal.InternalNode, value: node<10516047>) - element of array (index: 0) - array (class [Ljava.lang.Object;, size 1) - field (class: org.apache.spark.sql.catalyst.expressions.GenericRow, name: values, type: class [Ljava.lang.Object;) - object (class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema, [node<10516047>]) - element of array (index: 0) - array (class [Lorg.apache.spark.sql.Row;, size 1)

    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages()
  2. Spark
    DAGScheduler$$anonfun$abortStage$1.apply
    1. org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
    2. org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1438)
    3. org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1437)
    3 frames
  3. Scala
    ArrayBuffer.foreach
    1. scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    2. scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    2 frames
  4. Spark
    DAGScheduler$$anonfun$handleTaskSetFailed$1.apply
    1. org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
    2. org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
    3. org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
    3 frames
  5. Scala
    Option.foreach
    1. scala.Option.foreach(Option.scala:257)
    1 frame
  6. Spark
    RDD.take
    1. org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
    2. org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
    3. org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
    4. org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
    5. org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    6. org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
    7. org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
    8. org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
    9. org.apache.spark.SparkContext.runJob(SparkContext.scala:1897)
    10. org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1305)
    11. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    12. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    13. org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
    14. org.apache.spark.rdd.RDD.take(RDD.scala:1279)
    14 frames