org.apache.spark.SparkException: Task not serializable

GitHub | burgerdev | 5 months ago
tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    GitHub comment 9#248278919

    GitHub | 5 months ago | burgerdev
    org.apache.spark.SparkException: Task not serializable
  2. 0

    Spark tries to serialize wisp Plot? Bug?

    GitHub | 5 months ago | raproth
    org.apache.spark.SparkException: Task not serializable
  3. 0

    Applying a map function to all elements of column in a Spark dataframe

    Stack Overflow | 7 months ago | Feynman27
    org.apache.spark.SparkException: Task not serializable
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    SparkR window function : Error "Task not serializable"

    Stack Overflow | 1 year ago | Villo
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
  6. 0

    SparkSQL Add a new column to dataframe base on existing column

    Stack Overflow | 1 year ago | user5264280
    org.apache.spark.SparkException: Task not serializable

    1 unregistered visitors
    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.SparkException

      Task not serializable

      at org.apache.spark.util.ClosureCleaner$.ensureSerializable()
    2. Spark
      RDD.mapPartitions
      1. org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
      2. org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
      3. org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
      4. org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
      5. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:707)
      6. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:706)
      7. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
      8. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
      9. org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
      10. org.apache.spark.rdd.RDD.mapPartitions(RDD.scala:706)
      10 frames
    3. Spark Project SQL
      SparkPlan$$anonfun$execute$5.apply
      1. org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56)
      2. org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
      3. org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
      3 frames
    4. Spark
      RDDOperationScope$.withScope
      1. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
      1 frame
    5. Spark Project SQL
      DataFrame.show
      1. org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
      2. org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:187)
      3. org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
      4. org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
      5. org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
      6. org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
      7. org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
      8. org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
      9. org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
      10. org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
      11. org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375)
      12. org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374)
      13. org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
      14. org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374)
      15. org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456)
      16. org.apache.spark.sql.DataFrame.showString(DataFrame.scala:170)
      17. org.apache.spark.sql.DataFrame.show(DataFrame.scala:350)
      18. org.apache.spark.sql.DataFrame.show(DataFrame.scala:311)
      19. org.apache.spark.sql.DataFrame.show(DataFrame.scala:319)
      19 frames
    6. Unknown
      $iwC.<init>
      1. $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:33)
      2. $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38)
      3. $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40)
      4. $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42)
      5. $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:44)
      6. $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:46)
      7. $iwC$$iwC$$iwC$$iwC.<init>(<console>:48)
      8. $iwC$$iwC$$iwC.<init>(<console>:50)
      9. $iwC$$iwC.<init>(<console>:52)
      10. $iwC.<init>(<console>:54)
      10 frames