Searched on Google with the first line of a JAVA stack trace?

We can recommend more relevant solutions and speed up debugging when you paste your entire stack trace with the exception message. Try a sample exception.

Recommended solutions based on your search

Solutions on the web

via GitHub by geoHeil
, 1 year ago
Job aborted due to stage failure: Task 2 in stage 2.0 failed 1 times, most recent failure: Lost task 2.0 in stage 2.0 (TID 11, localhost): ml.dmlc.xgboost4j.java.XGBoostError: [14:43:22] src/metric/elementwise_metric.cc:28: Check failed: (preds.size()) == (info.labels.size()) label and prediction size not match, hint: use merror or mlogloss for multi-class classification
org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 2.0 failed 1 times, most recent failure: Lost task 2.0 in stage 2.0 (TID 11, localhost): ml.dmlc.xgboost4j.java.XGBoostError: [14:43:22] src/metric/elementwise_metric.cc:28: Check failed: (preds.size()) == (info.labels.size()) label and prediction size not match, hint: use merror or mlogloss for multi-class classification at ml.dmlc.xgboost4j.java.JNIErrorHandle.checkCall(JNIErrorHandle.java:48) at ml.dmlc.xgboost4j.java.Booster.evalSet(Booster.java:178) at ml.dmlc.xgboost4j.scala.Booster.evalSet(Booster.scala:97) at ml.dmlc.xgboost4j.scala.spark.XGBoostModel$$anonfun$1.apply(XGBoostModel.scala:80) at ml.dmlc.xgboost4j.scala.spark.XGBoostModel$$anonfun$1.apply(XGBoostModel.scala:62) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:766) at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:766) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) at org.apache.spark.scheduler.Task.run(Task.scala:85) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)