org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 2.0 failed 1 times, most recent failure: Lost task 2.0 in stage 2.0 (TID 11, localhost): ml.dmlc.xgboost4j.java.XGBoostError: [14:43:22] src/metric/elementwise_metric.cc:28: Check failed: (preds.size()) == (info.labels.size()) label and prediction size not match, hint: use merror or mlogloss for multi-class classification

GitHub | geoHeil | 6 months ago
tip
Your exception is missing from the Samebug knowledge base.
Here are the best solutions we found on the Internet.
Click on the to mark the helpful solution and get rewards for you help.
  1. 0

    xgboost 4j spark test failure version v0.6.0

    GitHub | 6 months ago | geoHeil
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 2.0 failed 1 times, most recent failure: Lost task 2.0 in stage 2.0 (TID 11, localhost): ml.dmlc.xgboost4j.java.XGBoostError: [14:43:22] src/metric/elementwise_metric.cc:28: Check failed: (preds.size()) == (info.labels.size()) label and prediction size not match, hint: use merror or mlogloss for multi-class classification
  2. 0

    RE: Not Serializable exception when integrating SQL and Spark Streaming

    apache.org | 1 year ago
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1435) at org.apache.spark.rdd.RDD.map(RDD.scala:271) at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:78) at org.apache.spark.sql.api.java.JavaSchemaRDD.map(JavaSchemaRDD.scala:42) at com.basic.spark.NumberCount$2.call(NumberCount.java:79) at com.basic.spark.NumberCount$2.call(NumberCount.java:67) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:171) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
  3. 0

    RE: Not Serializable exception when integrating SQL and Spark Streaming

    apache.org | 1 year ago
    org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1435) at org.apache.spark.rdd.RDD.map(RDD.scala:271) at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:78) at org.apache.spark.sql.api.java.JavaSchemaRDD.map(JavaSchemaRDD.scala:42) at com.basic.spark.NumberCount$2.call(NumberCount.java:79) at com.basic.spark.NumberCount$2.call(NumberCount.java:67) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.api.java.JavaDStreamLike$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:274) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.DStream$anonfun$foreachRDD$1.apply(DStream.scala:529) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:171) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.SparkException

      Job aborted due to stage failure: Task 2 in stage 2.0 failed 1 times, most recent failure: Lost task 2.0 in stage 2.0 (TID 11, localhost): ml.dmlc.xgboost4j.java.XGBoostError: [14:43:22] src/metric/elementwise_metric.cc:28: Check failed: (preds.size()) == (info.labels.size()) label and prediction size not match, hint: use merror or mlogloss for multi-class classification

      at ml.dmlc.xgboost4j.java.JNIErrorHandle.checkCall()
    2. ml.dmlc.xgboost4j
      XGBoostModel$$anonfun$1.apply
      1. ml.dmlc.xgboost4j.java.JNIErrorHandle.checkCall(JNIErrorHandle.java:48)
      2. ml.dmlc.xgboost4j.java.Booster.evalSet(Booster.java:178)
      3. ml.dmlc.xgboost4j.scala.Booster.evalSet(Booster.scala:97)
      4. ml.dmlc.xgboost4j.scala.spark.XGBoostModel$$anonfun$1.apply(XGBoostModel.scala:80)
      5. ml.dmlc.xgboost4j.scala.spark.XGBoostModel$$anonfun$1.apply(XGBoostModel.scala:62)
      5 frames
    3. Spark
      Executor$TaskRunner.run
      1. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:766)
      2. org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:766)
      3. org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
      4. org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
      5. org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
      6. org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
      7. org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
      8. org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
      9. org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
      10. org.apache.spark.scheduler.Task.run(Task.scala:85)
      11. org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
      11 frames
    4. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames