org.apache.spark.SparkException

There are no available Samebug tips for this exception. Do you have an idea how to solve this issue? A short tip would help users who saw this issue last week.

  • I've employed two System Administrators on a contract basis (for quite a bit of money), and both contractors have independently hit the following exception. What we are doing is: 1. Installing Spark 0.9.1 according to the documentation on the website, along with CDH4 (and another cluster with CDH5) distros of hadoop/hdfs. 2. Building a fat jar with a Spark app with sbt then trying to run it on the cluster I've also included code snippets, and sbt deps at the bottom. When I've Googled this, there seems to be two somewhat vague responses: a) Mismatching spark versions on nodes/user code b) Need to add more jars to the SparkConf Now I know that (b) is not the problem having successfully run the same code on other clusters while only including one jar (it's a fat jar). But I have no idea how to check for (a) - it appears Spark doesn't have any version checks or anything - it would be nice if it checked versions and threw a "mismatching version exception: you have user code using version X and node Y has version Z". I would be very grateful for advice on this. The exception: Exception in thread "main" org.apache.spark.SparkException: Job aborted: Task 0.0:1 failed 32 times (most recent failure: Exception failure: java.lang.IllegalStateException: unread block data) at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1020) at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1018) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1018) at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:604) at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) 14/05/16 18:05:31 INFO scheduler.TaskSetManager: Loss was due to java.lang.IllegalStateException: unread block data [duplicate 59] My code snippet: val conf = new SparkConf() .setMaster(clusterMaster) .setAppName(appName) .setSparkHome(sparkHome) .setJars(SparkContext.jarOfClass(this.getClass)) println("count = " + new SparkContext(conf).textFile(someHdfsPath).count()) My SBT dependencies: // relevant "org.apache.spark" % "spark-core_2.10" % "0.9.1", "org.apache.hadoop" % "hadoop-client" % "2.3.0-mr1-cdh5.0.0", // standard, probably unrelated "com.github.seratch" %% "awscala" % "[0.2,)", "org.scalacheck" %% "scalacheck" % "1.10.1" % "test", "org.specs2" %% "specs2" % "1.14" % "test", "org.scala-lang" % "scala-reflect" % "2.10.3", "org.scalaz" %% "scalaz-core" % "7.0.5", "net.minidev" % "json-smart" % "1.2"
    via by sam,
  • I've employed two System Administrators on a contract basis (for quite a bit of money), and both contractors have independently hit the following exception. What we are doing is: 1. Installing Spark 0.9.1 according to the documentation on the website, along with CDH4 (and another cluster with CDH5) distros of hadoop/hdfs. 2. Building a fat jar with a Spark app with sbt then trying to run it on the cluster I've also included code snippets, and sbt deps at the bottom. When I've Googled this, there seems to be two somewhat vague responses: a) Mismatching spark versions on nodes/user code b) Need to add more jars to the SparkConf Now I know that (b) is not the problem having successfully run the same code on other clusters while only including one jar (it's a fat jar). But I have no idea how to check for (a) - it appears Spark doesn't have any version checks or anything - it would be nice if it checked versions and threw a "mismatching version exception: you have user code using version X and node Y has version Z". I would be very grateful for advice on this. The exception: Exception in thread "main" org.apache.spark.SparkException: Job aborted: Task 0.0:1 failed 32 times (most recent failure: Exception failure: java.lang.IllegalStateException: unread block data) at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1020) at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1018) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1018) at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:604) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:604) at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) 14/05/16 18:05:31 INFO scheduler.TaskSetManager: Loss was due to java.lang.IllegalStateException: unread block data [duplicate 59] My code snippet: val conf = new SparkConf() .setMaster(clusterMaster) .setAppName(appName) .setSparkHome(sparkHome) .setJars(SparkContext.jarOfClass(this.getClass)) println("count = " + new SparkContext(conf).textFile(someHdfsPath).count()) My SBT dependencies: // relevant "org.apache.spark" % "spark-core_2.10" % "0.9.1", "org.apache.hadoop" % "hadoop-client" % "2.3.0-mr1-cdh5.0.0", // standard, probably unrelated "com.github.seratch" %% "awscala" % "[0.2,)", "org.scalacheck" %% "scalacheck" % "1.10.1" % "test", "org.specs2" %% "specs2" % "1.14" % "test", "org.scala-lang" % "scala-reflect" % "2.10.3", "org.scalaz" %% "scalaz-core" % "7.0.5", "net.minidev" % "json-smart" % "1.2"
    via by sam,
  • Spark cluster computing framework
    via by Unknown author,
  • SparkException: local class incompatible
    via Stack Overflow by deadlock89
    ,
    • org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3, vm115): java.lang.IllegalStateException: unread block data at java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2424) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371) at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:69) at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:95) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:193) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

    Users with the same issue

    johnxfly
    9 times, last one,
    tyson925
    1 times, last one,
    Unknown visitor1 times, last one,