org.apache.spark.sql.AnalysisException: path s3n://data-platform/test/test.json already exists

Stack Overflow | Lobsterrrr | 2 months ago
  1. 0

    org.apache.spark.sql.AnalysisException: path "s3n://..." already exists

    Stack Overflow | 2 months ago | Lobsterrrr
    org.apache.spark.sql.AnalysisException: path s3n://data-platform/test/test.json already exists
  2. 0

    Feature: be able to overwrite parquet file

    GitHub | 4 months ago | koaning
    org.apache.spark.sql.AnalysisException: path file:/Users/code/Development/warcraft-avatar-history/wowah_data.parquet already exists.;
  3. 0

    Can't not run spark job on yarn..

    Google Groups | 6 months ago | Eric DONG
    org.apache.spark.sql.AnalysisException: path alluxio://208.208.102.230:19998/test already exists.;
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0

    Can't run spark job on yarn

    Google Groups | 6 months ago | Zeheng Dong
    org.apache.spark.sql.AnalysisException: path alluxio://208.208.102.230:19998/test already exists.;
  6. 0

    Spark - How to identify a failed Job

    Stack Overflow | 3 months ago | Yohan Liyanage
    org.apache.spark.sql.AnalysisException: Path does not exist: s3n://data/2016-08-31/*.csv;

    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.sql.AnalysisException

      path s3n://data-platform/test/test.json already exists

      at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run()
    2. org.apache.spark
      InsertIntoHadoopFsRelation.run
      1. org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:76)
      1 frame
    3. Spark Project SQL
      SparkPlan$$anonfun$execute$5.apply
      1. org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
      2. org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
      3. org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
      4. org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
      5. org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
      5 frames
    4. Spark
      RDDOperationScope$.withScope
      1. org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
      1 frame
    5. Spark Project SQL
      QueryExecution.toRdd
      1. org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
      2. org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
      3. org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
      3 frames
    6. org.apache.spark
      ResolvedDataSource$.apply
      1. org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)
      1 frame
    7. Spark Project SQL
      DataFrameWriter.text
      1. org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)
      2. org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139)
      3. org.apache.spark.sql.DataFrameWriter.text(DataFrameWriter.scala:362)
      3 frames
    8. org.test.consumer
      KafkaTestConsumer$$anonfun$creatingFunc$1.apply
      1. org.test.consumer.kafka.KafkaTestConsumer$$anonfun$creatingFunc$1.apply(KafkaTestConsumer.scala:116)
      2. org.test.consumer.kafka.KafkaTestConsumer$$anonfun$creatingFunc$1.apply(KafkaTestConsumer.scala:111)
      2 frames
    9. Spark Project Streaming
      ForEachDStream$$anonfun$1.apply
      1. org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50)
      2. org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
      3. org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
      4. org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
      5. org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49)
      6. org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
      7. org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
      7 frames
    10. Scala
      Try$.apply
      1. scala.util.Try$.apply(Try.scala:192)
      1 frame
    11. Spark Project Streaming
      JobScheduler$JobHandler$$anonfun$run$1.apply
      1. org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
      2. org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224)
      3. org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
      4. org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
      4 frames
    12. Scala
      DynamicVariable.withValue
      1. scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
      1 frame
    13. Spark Project Streaming
      JobScheduler$JobHandler.run
      1. org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223)
      1 frame
    14. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames