Searched on Google with the first line of a JAVA stack trace?

We can recommend more relevant solutions and speed up debugging when you paste your entire stack trace with the exception message. Try a sample exception.

Recommended solutions based on your search

Solutions on the web

via Stack Overflow by aks
, 1 year ago
Cannot evaluate expression: parse_df_to_string(input[1, int, true], input[2, int, true], input[3, int, true], input[4, int, true], input[5, int, true])
via Stack Overflow by Satya
, 1 year ago
via Stack Overflow by Ivan Lee
, 10 months ago
Cannot evaluate expression: row_number()
java.lang.UnsupportedOperationException: Cannot evaluate expression: parse_df_to_string(input[1, int, true], input[2, int, true], input[3, int, true], input[4, int, true], input[5, int, true])	at org.apache.spark.sql.catalyst.expressions.Unevaluable$class.doGenCode(Expression.scala:224)	at org.apache.spark.sql.execution.python.PythonUDF.doGenCode(PythonUDF.scala:27)	at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:104)	at org.apache.spark.sql.catalyst.expressions.Expression$$anonfun$genCode$2.apply(Expression.scala:101)	at scala.Option.getOrElse(Option.scala:121)	at org.apache.spark.sql.catalyst.expressions.Expression.genCode(Expression.scala:101)	at org.apache.spark.sql.catalyst.expressions.codegen.CodegenContext$$anonfun$generateExpressions$1.apply(CodeGenerator.scala:740)	at org.apache.spark.sql.catalyst.expressions.codegen.CodegenContext$$anonfun$generateExpressions$1.apply(CodeGenerator.scala:740)