org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 2.0 failed 1 times, most recent failure: Lost task 1.0 in stage 2.0 (TID 3, localhost): java.lang.IllegalArgumentException: Must specify table name

Stack Overflow | wadhwasahil | 4 months ago
tip
Do you find the tips below useful? Click on the to mark them and say thanks to poroszd and poroszd . Or join the community to write better ones.
  1. 0

    HBase read/write using pyspark

    Stack Overflow | 4 months ago | wadhwasahil
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 2.0 failed 1 times, most recent failure: Lost task 1.0 in stage 2.0 (TID 3, localhost): java.lang.IllegalArgumentException: Must specify table name
  2. 0
    samebug tip
    You should use java.sql.Timestamp or Date to map BsonDateTime from mongodb.
  3. 0
    samebug tip
    Compile your code with scala version 2.10.x instead of 2.11.x
  4. Speed up your debug routine!

    Automated exception search integrated into your IDE

  5. 0
    samebug tip
    I was missing a partitioning column because I did not specify the "basePath" option on read
  6. 0

    Increment column value in Spark

    Stack Overflow | 8 months ago | Akhila Lankala
    org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 6.0 failed 4 times, most recent failure: Lost task 1.3 in stage 6.0 (TID 100, dev-arc-app036.vega.cloud.ironport.com): java.io.IOException: Pass a Delete or a Put

    Not finding the right solution?
    Take a tour to get the most out of Samebug.

    Tired of useless tips?

    Automated exception search integrated into your IDE

    Root Cause Analysis

    1. org.apache.spark.SparkException

      Job aborted due to stage failure: Task 1 in stage 2.0 failed 1 times, most recent failure: Lost task 1.0 in stage 2.0 (TID 3, localhost): java.lang.IllegalArgumentException: Must specify table name

      at org.apache.hadoop.hbase.mapreduce.TableOutputFormat.setConf()
    2. HBase
      TableOutputFormat.setConf
      1. org.apache.hadoop.hbase.mapreduce.TableOutputFormat.setConf(TableOutputFormat.java:193)
      1 frame
    3. Spark
      Executor$TaskRunner.run
      1. org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1099)
      2. org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1091)
      3. org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
      4. org.apache.spark.scheduler.Task.run(Task.scala:89)
      5. org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
      5 frames
    4. Java RT
      Thread.run
      1. java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
      2. java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
      3. java.lang.Thread.run(Thread.java:745)
      3 frames